Dynamic void distribution in myoglobin and five mutants
نویسندگان
چکیده
Globular proteins contain cavities/voids that play specific roles in controlling protein function. Elongated cavities provide migration channels for the transport of ions and small molecules to the active center of a protein or enzyme. Using Monte Carlo and Molecular Dynamics on fully atomistic protein/water models, a new computational methodology is introduced that takes into account the protein's dynamic structure and maps all the cavities in and on the surface. To demonstrate its utility, the methodology is applied to study cavity structure in myoglobin and five of its mutants. Computed cavity and channel size distributions reveal significant differences relative to the wild type myoglobin. Computer visualization of the channels leading to the heme center indicates restricted ligand access for the mutants consistent with the existing interpretations. The new methodology provides a quantitative measure of cavity structure and distributions and can become a valuable tool for the structural characterization of proteins.
منابع مشابه
Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants.
Recombinant human myoglobin mutants with the distal His residue (E7, His64) replaced by Leu, Val, or Gln residues were prepared by site-directed mutagenesis and expression in Escherichia coli. Electronic and coordination structures of the ferric heme iron in the recombinant myoglobin proteins were examined by optical absorption, EPR, 1H NMR, magnetic circular dichroism, and x-ray spectroscopy. ...
متن کاملFTIR and resonance Raman studies of nitric oxide binding to H93G cavity mutants of myoglobin.
Nitric oxide (NO) binds to the myoglobin (Mb) cavity mutant, H93G, forming either a five- or six-coordinate Fe-NO complex. The H93G mutation eliminates the covalent attachment between the protein and the proximal ligand, allowing NO to bind H93G possibly from the proximal side of the heme rather than the typical diatomic binding pocket on the distal side. The question of whether NO binds on the...
متن کاملAssignment of the heme axial ligand(s) for the ferric myoglobin (H93G) and heme oxygenase (H25A) cavity mutants as oxygen donors using magnetic circular dichroism.
UV-visible absorption and magnetic circular dichroism (MCD) data are reported for the cavity mutants of sperm whale H93G myoglobin and human H25A heme oxygenase in their ferric states at 4 degreesC. Detailed spectral analyses of H93G myoglobin reveal that its heme coordination structure has a single water ligand at pH 5.0, a single hydroxide ligand at pH 10.0, and a mixture of species at pH 7.0...
متن کاملHeterogeneity of myoglobin distribution in the locomotory muscles of five cetacean species.
Myoglobin is an important storage site for oxygen in the swimming muscles of diving marine mammals. However, little is known about its distribution within muscles since previous studies have relied on single samples. The goal of this study was to determine the distribution of myoglobin within the swimming muscles of five species of cetacean: dusky dolphin, false killer whale, striped dolphin, h...
متن کاملValues of troponin T and myoglobin predictive of non-cardiac ischemia in rats
Objective(s):Biochemical markers are important for the timely diagnosis and follow-up of ischemic events. Most of the markers have been previously studied in the context of cardiac ischemia. However, research on markers of non-cardiac events has been insufficient. Therefore, we investigated the relationship between troponin and myoglobin which are commonly used markers of cardiac ischemia, in n...
متن کامل